
Lecture 5

Biot-Savart law, Conductive
Media Interface, Instantaneous
Poynting’s Theorem

Biot-Savart law, like Ampere’s law was experimentally determined in around 1820 and it
is discussed in a number of textbooks [32, 33, 47]. This is the cumulative work of Ampere,
Oersted, Biot, and Savart. At this stage of the course, we have learnt enough mathematical
tool to derive this law from Ampere’s law and Gauss’s law for magnetostatics. So it is
appropriate at this point to show the power of mathematical logic in deriving something
inferred experimentally eons ago. In addition, we will study the boundary conditions at
conductive media interfaces, and introduce the instantaneous Poynting’s theorem.
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5.1 Derivation of Biot-Savart Law

Figure 5.1: A current element used to illustrate the derivation of Biot-Savart law. The
current element generates a magnetic field due to Ampere’s law in the static limit. This
law was established experimentally, but here, we will derive this law based on our math-
ematical knowledge so far.

Bio-Savart law allows us to derive the magnetic field due to the electric current flowing in a
filamental wire. To this end, we break the wire into union of tiny segments, and calculate the
magnetic from each of these tiny segments. From Gauss’ law and Ampere’s law in the static
limit, and using the definition of the Green’s function, we have derived that

A(r) =
µ

4π

�
V

J(r′)

R
dV ′ (5.1.1)

where R = |r − r′|. When the current element is small, and is carried by a wire of cross
sectional area ∆a as shown in Figure 5.1, we can approximate the integrand as

J(r′)dV ′ ≈ J(r′)∆V ′ = (∆a)∆l′︸ ︷︷ ︸
∆V ′

l̂I/∆a︸ ︷︷ ︸
J(r′)

= l̂I∆l′ (5.1.2)

In the above, ∆V = (∆a)∆l and l̂I/∆a = J(r′) since J has the unit of amperes/m2. Here, l̂
is a unit vector pointing in the direction of the current flow or the axis of the wire. Hence,
we can let the current element be

J(r′)∆V ′ = I∆l′ (5.1.3)

where the vector ∆l′ = ∆ll̂, and ′ indicates that it is located at r′. Therefore, the incremental
vector potential due to an incremental current element J(r′)∆V ′ is

∆A(r) =
µ

4π

(
J(r′)∆V ′

R

)
=

µ

4π

I∆l′

R
(5.1.4)
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Since B = ∇×A, we derive that the incremental B flux, ∆B due to the incremental current
I∆l′ is

∆B = ∇×∆A(r) =
µI

4π
∇× ∆l′

R
=
−µI
4π

∆l′ ×∇ 1

R
(5.1.5)

where we have made use of the fact that ∇×af(r) = −a×∇f(r) when a is a constant vector.
The above can be simplified further making use of the fact that1

∇ 1

R
= − 1

R2
R̂ (5.1.6)

where R̂ is a unit vector pointing in the r− r′ direction. We have also made use of the fact
that R =

√
(x− x′)2 + (y − y′)2 + (z − z′)2. Consequently, assuming that the incremental

length becomes infinitesimally small, or ∆l→ dl, we have, after using (5.1.6) in (5.1.5), that
the incremental magnetic flux density dB is

dB =
µI

4π
dl′ × 1

R2
R̂

=
µIdl′ × R̂

4πR2
(5.1.7)

Since B = µH, the incremental magnetic field is

dH =
Idl′ × R̂

4πR2
(5.1.8)

or for contribution from the wire,

H(r) =

�
I(r′)dl′ × R̂

4πR2
(5.1.9)

which is Biot-Savart law, first determined experimentally, now derived using electromagnetic
field theory.

1This is best done by expressing the ∇ operator and R in cartesian coordinates.
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5.2 Shielding by Conductive Media

5.2.1 Boundary Conditions—Conductive Media Case

Figure 5.2: The schematics for deriving the boundary condition for the current density
J at the interface of two conductive media.

In a conductive medium, J = σE, which is just a statement of Ohm’s law or I = V
R . From the

current continuity equation, which is derivable from Ampere’s law and Gauss’ law for electric
flux, one gets

∇ · J = −∂%
∂t

(5.2.1)

If the right-hand side is everywhere finite, it will not induce a jump discontinuity in the
current. Moreover, it is zero for static limit. Hence, just like the Gauss’s law case, the above
implies that the normal component of the current Jn is continuous, or that J1n = J2n in the
static limit. In other words, in compact notation,

n̂ · (J2 − J1) = 0 (5.2.2)

Hence, using J = σE, we have

σ2E2n − σ1E1n = 0 (5.2.3)

The above has to be always true in the static limit irrespective of the values of σ1 and σ2.
But Gauss’s law implies the boundary condition that

ε2E2n − ε1E1n = %s (5.2.4)

The above equation is incompatible with (5.2.3) unless %s 6= 0. Hence, surface charge density
or charge accumulation is necessary at the interface, unless σ2/σ1 = ε2/ε1. This is found
in semiconductor materials which are both conductive and having a permitivity: interfacial
charges appear at the interface of two semi-conductor materials.
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5.2.2 Electric Field Inside a Conductor

The electric field inside a perfect electric conductor (PEC) has to be zero by the explanation
as follows. If medium 1 is a perfect electric conductor, then σ → ∞ but J1 = σE1. An
infinitesimal E1 will give rise to an infinite current J1. To avoid this ludicrous situation, E1

has to be 0. This implies that D1 = 0 as well.

Figure 5.3: The behavior of the electric field and electric flux at the interface of a perfect
electric conductor and free space (or air).

Since tangential E is continuous, from Faraday’s law, it is still true that

E2t = E1t = 0 (5.2.5)

or n̂×E = 0. But since

n̂ · (D2 −D1) = %s (5.2.6)

and that D1 = 0, then

n̂ ·D2 = %s (5.2.7)

So surface charge density has to be nonzero at a PEC/air interface. Moreover, normal D2 6= 0,
but tangential E2 = 0: Thus the E and D have to be normal to the PEC surface. The sketch
of the electric field in the vicinity of a perfect electric conducting (PEC) surface is shown in
Figure 5.3.

The above argument for zero electric field inside a perfect conductor is true for electro-
dynamic problems. However, one does not need the above argument regarding the shielding
of the static electric field from a conducting region. In the situation of the two conducting
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objects example below, as long as the electric fields are non-zero in the objects, currents will
keep flowing. They will flow until the charges in the two objects orient themselves so that
electric current cannot flow anymore. This happens when the charges produce internal fields
that cancel each other giving rise to zero field inside the two objects. Faraday’s law still
applies which means that tangental E field has to be continuous. Therefore, the boundary
condition that the fields have to be normal to the conducting object surface is still true for
elecrostatics. A sketch of the electric field between two conducting spheres is show in Figure
5.4.

Figure 5.4: The behavior of the electric field and flux outside two conductors in the
static limit. The two conductors need not be PEC, and yet, the fields are normal to the
interface.

5.2.3 Magnetic Field Inside a Conductor

We have seen that for a finite conductor, as long as σ 6= 0, the charges will re-orient themselves
until the electric field is expelled from the conductor; otherwise, the current will keep flowing
until E = 0 or ∂tE = 0. In a word, static E is zero inside a conductor.

But there are no magnetic charges nor magnetic conductors in this world. Thus this
physical phenomenon does not happen for magnetic field: In other words, static magnetic
field cannot be expelled from an electric conductor. However, a magnetic field can be expelled
from a perfect conductor or a superconductor. You can only fully understand this physical
phenomenon if we study the time-varying form of Maxwell’s equations.

In a perfect conductor where σ → ∞, it is unstable for the magnetic field B to be
nonzero. As time varying magnetic field gives rise to an electric field by the time-varying
form of Faraday’s law, a small time variation of the B field will give rise to infinite current
flow in a perfect conductor. Therefore to avoid this ludicrous situation, and to be stable,
B = 0 in a perfect conductor or a superconductor.

So if medium 1 is a perfect electric conductor (PEC), then B1 = H1 = 0. The boundary
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condition for magnetic field from Ampere’s law

n̂× (H2 −H1) = n̂×H2 = Js (5.2.8)

which is the jump condition for the magnetic field. In other words, a surface current Js has
to flow at the surface of a PEC in order to support the jump discontinuity in the tangential
component of the magnetic field.

From Gauss’s law, n̂ · B is always continuous, or n̂ · (B2 − B1) = 0, at an interface
because of the absence of magnetic charges. The magnetic flux B1 is expelled from the
perfect conductor making n̂ ·B1 = 0 zero. Therefore, n̂ ·B2 = 0 as well. And hence, there is
no normal component of the B field at the interface. Therefore, the boundary condition for
B2 becomes, for a PEC,

n̂ ·B2 = 0 (5.2.9)

The B field in the vicinity of a perfect conductor surface is as shown in Figure 5.5.

Figure 5.5: Sketch of the magnetic flux B around a perfect electric conductor. As
explained in the text, it is seen that n̂ · B = 0 at the surface of the perfect electric
conductor.

When a superconductor cube is placed next to a static magnetic field near a permanent
magnet, eddy current will be induced on the superconductor. The eddy current will expel the
static magnetic field from the permanent magnet, or in a word, it will produce a magnetic
dipole on the superconducting cube that repels the static magnetic field. Since these two
magnetic dipoles are of opposite polarity, they repel each other, and cause the superconducting
cube to levitate on the static magnetic field as shown in Figure 5.6.2

2You may see this demo in a local museum. I saw one in the Boston Museum of Science, 2018.
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Figure 5.6: Levitation of a superconducting disk on top of a static magnetic field due
to expulsion of the magnetic field from the superconductor. This is also known as the
Meissner effect (figure courtesy of Wikimedia).

5.3 Instantaneous Poynting’s Theorem

Before we proceed further with studying energy and power, it is habitual to add fictitious
magnetic current M and fictitious magnetic charge %m to Maxwell’s equations to make them
symmetric mathematically.3 To this end, we have

∇×E = −∂B

∂t
−M (5.3.1)

∇×H =
∂D

∂t
+ J (5.3.2)

∇ ·D = % (5.3.3)

∇ ·B = %m (5.3.4)

Consider the first two of Maxwell’s equations where fictitious magnetic current is included
and that the medium is isotropic such that B = µH and D = εE. Next, we need to consider
only the first two equations (since in electrodynamics, by invoking charge conservation, the
third and the fourth equations are derivable from the first two). They are

∇×E = −∂B

∂t
−Mi = −µ∂H

∂t
−Mi (5.3.5)

∇×H =
∂D

∂t
+ J = ε

∂E

∂t
+ Ji + σE (5.3.6)

where Mi and Ji are impressed current sources. They are sources that are impressed into
the system, and they cannot be changed by their interaction with the environment [51].

Also, for a conductive medium, a conduction current or induced current flows in addition
to impressed current. Here, J = σE is the induced current source in the conductor. Moreover,
J = σE is similar to ohm’s law. By dot multiplying (5.3.5) with H, and dot multiplying (5.3.6)

3Even though magnetic current does not exist, electric current can be engineered to look like magnetic
current as shall be learnt. James Clerk Maxwell also added fictitious magnetic current in his mathematical
treatise.
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with E, we can show that

H · ∇ ×E = −µH · ∂H

∂t
−H ·Mi (5.3.7)

E · ∇ ×H = εE · ∂E

∂t
+ E · Ji + σE ·E (5.3.8)

Using the identity, which is the same as the product rule for derivatives, we have4

∇ · (E×H) = H · (∇×E)−E · (∇×H) (5.3.9)

Therefore, from (5.3.7), (5.3.8), and (5.3.9) we have

∇ · (E×H) = −
(
µH · ∂H

∂t
+ εE · ∂E

∂t
+ σE ·E + H ·Mi + E · Ji

)
(5.3.10)

To elucidate the physical meaning of the above, we first consider σ = 0, and Mi = Ji = 0,
or in the absence of conductive loss and the impressed current sources. Then the above
becomes

∇ · (E×H) = −
(
µH · ∂H

∂t
+ εE · ∂E

∂t

)
(5.3.11)

Rewriting each term on the right-hand side of the above, we have5

µH · ∂H

∂t
=

1

2
µ
∂

∂t
(H ·H) =

∂

∂t

(
1

2
µ|H|2

)
=

∂

∂t
Wm (5.3.12)

εE · ∂E

∂t
=

1

2
ε
∂

∂t
(E ·E) =

∂

∂t

(
1

2
ε|E|2

)
=

∂

∂t
We (5.3.13)

where |H(r, t)|2 = H(r, t) ·H(r, t), and |E(r, t)|2 = E(r, t) ·E(r, t). Then (5.3.11) becomes

∇ · (E×H) = − ∂

∂t
(Wm +We) (5.3.14)

where

Wm =
1

2
µ|H|2, We =

1

2
ε|E|2 (5.3.15)

Equation (5.3.14) is reminiscent of the current continuity equation, namely that,

∇ · J = −∂%
∂t

(5.3.16)

4The cyclical identity, or the cyclical triple product rule, that a · (b× c) = c · (a×b) = b · (c× a) is useful
for the derivation.

5The following equality can be established by the product rule of differentiation that ∂
∂t

(H ·H) = H · ∂H
∂t

+
∂H
∂t
·H.
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which is a statement of charge conservation. In other words, time variation of current density
at a point is due to charge density flow into or out of the point.

The vector quantity

Sp = E×H (5.3.17)

is called the Poynting’s vector, and (5.3.14) becomes

∇ · Sp = − ∂

∂t
Wt (5.3.18)

where Wt = We + Wm is the total energy density stored in the electric and magnetic fields
while Sp is the power density. It is easy to show that Sp, the power density, has a dimension
of watts per meter square, and that Wt, the energy density, has a dimension of joules per
meter cube.

The above is similar in physical interpretation to the current continuity equation which is

∇ · J(r, t) = −∂t%(r, t) (5.3.19)

One can think that in the current continuity equation, that current density is charge density
flow. Hence, power density is energy density flow. We can think of a cube of energy density
Wt moving at velocity v, giving rise to power density Sp, and their relationship is

Sp = Wtv (5.3.20)

The right-hand side represents energy density flow while the left-hand side represents power
density. Once can check the sanity of the above equation using dimensional analysis.

Now, if we let σ 6= 0, then the term to be included is then σE · E = σ|E|2 which has
the unit of S m−1 times V2 m−2, or W m−3 where S is siemens. We arrive at this unit by

noticing that 1
2
V 2

R is the power dissipated in a resistor of R ohms with a unit of watts. The
reciprocal unit of ohms, which used to be called mhos is now called siemens. With σ 6= 0,
(5.3.18) becomes

∇ · Sp = − ∂

∂t
Wt − σ|E|2 = − ∂

∂t
Wt − Pd (5.3.21)

Here, ∇·Sp has physical meaning of power density oozing out from a point, and −Pd = −σ|E|2
has the physical meaning of power density dissipated (siphoned) at a point by the conductive
loss in the medium which is proportional to −σ|E|2.

Now if we set Ji and Mi to be nonzero, (5.3.21) is augmented by the last two terms in
(5.3.10), or

∇ · Sp = − ∂

∂t
Wt − Pd −H ·Mi −E · Ji (5.3.22)

The last two terms can be interpreted as the power density supplied by the impressed currents
Mi and Ji or power source Ps. Therefore, (5.3.22) becomes

∇ · Sp = − ∂

∂t
Wt − Pd + Ps (5.3.23)
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where

Ps = −H ·Mi −E · Ji (5.3.24)

Here, Ps is the power supplied by the impressed current sources. These terms are positive if H
and Mi have opposite signs, or if E and Ji have opposite signs. The last terms reminds us of
what happens in a negative resistance device or a battery.6 In a battery, positive charges move
from a region of lower potential to a region of higher potential (see Figure 5.7) as opppose to
those in a resistor. The positive charges move from one end of a battery to the other end of
the battery. Hence, they are doing an “uphill climb” driven by chemical processes within the
battery.

Figure 5.7: Figure showing the dissipation of energy as the current flows around a loop.
A battery can be viewed as having a negative resistance.

In the above, one can easily work out that Ps has the unit of W m−3 which is power
density supplied. One can also choose to rewrite (5.3.23) in integral form by integrating it
over a volume V and invoking the divergence theorem yielding

�
S

dS · Sp = − d

dt

�
V

WtdV −
�
V

PddV +

�
V

PsdV (5.3.25)

The left-hand side is �
S

dS · Sp =

�
S

dS · (E×H) (5.3.26)

which represents the power flowing out of the surface S.

6A negative resistance has been made by Leo Esaki [52], winning him a share in the Nobel prize.
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